21. In which of the following situations is a large amount of friction necessary?
a. on top of an air hockey table
b. on the bottom of a downhill skier's skis
c. within the engine of a car
d. when a car is starting to move
22. What type of friction does a plane experience when in flight?
a. rolling friction
b. static friction
c. air resistance
d. none of the above
23. Two students are sliding on sleds and have an initial velocity of $8.2 \mathrm{~m} / \mathrm{s}$. The mass of the boy and sled 2 is 54 kg , the mass of the girl and sled 1 is 52 kg , and the coefficient of kinetic friction between the sleds and the ice is 0.12 . How far will the two slide before coming to a stop?

a. $\quad 27 \mathrm{~m}$
b. 23 m
c. 25 m
d. 29 m
24. With an antilock braking system, what is one thing that you should never do?
a. check your brake fluid
b. press the brake pedal too hard
c. steer the car in the correct direction
d. pump the brakes
25. Which of the following is designed to increase friction?
a. golf club grips
b. fluid bearings
c. near-frictionless carbon
d. ice skates
26. What type of energy is possessed by materials that are stretched, compressed, or twisted and tend to return to their original shape?
a. nuclear energy
b. thermal energy
c. elastic energy
d. chemical energy
27. An electric light bulb performs which energy transformation?
a. electrical energy \rightarrow chemical energy + kinetic energy
b. chemical energy \rightarrow kinetic energy
c. radiant energy \rightarrow chemical energy
d. electrical energy \rightarrow radiant energy + thermal energy
28. Which term describes the capacity to do work?
a. brownout
b. efficiency
c. energy
d. power
29. Which term refers to the sum of kinetic energy and gravitational potential energy?
a. efficiency
b. nuclear energy
c. thermal energy
d. mechanical energy
30. How much mechanical work does a woman do on a wheelbarrow if she applies a force with a magnitude of 35 N in the forward direction and displaces the wheel barrow 4.0 m in the same direction?
a. 140 J
b. 39 J
c. 4 J
d. 35 J
31. Determine the coefficient of friction for a floor if 550 J of work are done moving a 12 kg box 10.0 m at a constant velocity.
a. $\quad 0.47$
b. 0.63
c. 0.52
d. 0.58
32. How much work is done by a student carrying a 12 kg backpack while accelerating at a rate of $0.51 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 5.0 m ?
a. 750 J
b. 0 J
c. 300 J
d. 590 J
33. William is carrying a 9.20 kg box, which he sets down from a height of 1.50 m . How much work is done in the process?
a. $\quad 13.8 \mathrm{~J}$
b. -135 J
c. 135 J
d. -13.8 J
34. A 430 kg motorcycle starts from rest and accelerates to a speed of $12 \mathrm{~m} / \mathrm{s}$. Calculate the net work done on the motorcycle.
a. 42 kJ
b. 35 kJ
c. 31 kJ
d. 38 kJ
35. Canada produces almost 60.0% of its energy from hydroelectric dams. The network of dams have a capacity of $3.4 \times 10^{10} \mathrm{~W}$. How much energy does Canada produce in 1.0 h from these dams?
a. $1.8 \times 10^{14} \mathrm{~J}$
b. $1.2 \times 10^{14} \mathrm{~J}$
c. $1.6 \times 10^{14} \mathrm{~J}$
d. $1.4 \times 10^{14} \mathrm{~J}$

Solutions \#21-36

21.	22.	23.	24.	25.	26.	27.	28.	29.	30.	31.	32.	33.	34.	35.	36.
D	C	D	D	A	C	D	C		D	A	A	B	B	C	B

