Sec 3.6 Factoring Polynomials

Today we are just using the division process to factor a polynomial function. We need this skill to find the zeros.

Oct 18-9:06 AM

The Remainder Theorem

To determine the remainder of a division without doing the entire division is a simple process of substitution.

EX:
$$(2x^3 - 5x^2 + 4x - 4) \div (x + 4)$$

 $f(x) = (x+4) \text{ (quotient)} + \text{ (remainder)}$
 $f(-4) =$

Note: When -4 is subbed into (x+4) it is equal to zero!

-the Factor Theorem is a special case of the Remainder Theorem when the remainder equals 0.

-to find a factor of a polynomial, find a value of x that gives a remainder 0.

-this factor is found by substituting values of x into f(x) until a solution of 0 is found. This gives a factor of (x-a).

Oct 18-9:06 AM

So... to find a zeros of a cubic or higher polynomial, we first "guess" to find a factor, then divide to find the resultant.

Ex

Factor $x^3 - 5x^2 - 2x + 24$ completely.

Once we know how to factor, then we can graph a cubic given in standard form.

Ex:

Sketch a graph of the function $y = 4x^4 + 6x^3 - 6x^2 - 4x$

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Oct 17-1:47 PM

homework#4ace, 5ab, 6ace, 7ace